
CS 4530: Fundamentals of Software Engineering

Module 10.2: Distributing Data

Jon Bell, Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences

1

© 2024 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/


Learning Goals for this Lesson
• At the end of this lesson, you should be 
able to 
• explain the concepts of data partition and 

replication
• List and explain the major benefits and 

pitfalls of each of these
• Explain the CAP theorem

2



Dealing with shared data is a 
challenge
• Most distributed systems have some 
shared data
• How important is it to:
• Retrieve data quickly?
• Update data quickly?
• Make sure all users see the same data?
• Make sure all users can always see (some 

values of) the data
• This all depends on the goals of the 
system.

3



Recurring Problem #1: Too Much Data
• In a non-distributed system, all accesses go to a 
single server.

A B

All accesses go to single server



Recurring Solution #1: Partitioning
• Divide up the data in some (hopefully logical) way.
• Each server is responsible for only some of the 
data

5

A
[0…1
00]

B 
[A…N]

A
[101.. 
200]

B 
[O…Z]



Partitioning has some advantages

6

• Each server has 50% of the data
• Requires less processing power per 
server
• Allows concurrency in reads/writes
• Even if one server goes down, still have 
access to 50% of the data



Partitioning also has a big challenge
• What’s a good way to divide the data?
• Depends on the nature of the application
• We’ll see this in our case studies

7



Recurring Problem #2: Too Many 
Requests
• In a non-distributed system, all requests go to a 
single server.

A B



Recurring Solution #2: Replication
• Entire data set is copied
• Either server can handle any request

A B

A B



Replication has advantages
• Improves performance:
• Client load can be evenly shared between 

servers
• Reduces latency: can place copies of data 

nearer to clients
• Improves availability:
• One replica fails, still can serve all requests 

from other replicas



But replication has a big problem: 
Consistency
• We probably want 
our system to work 
like this:
• If we tell the machine 
on the left to set A to 
5, then we expect the 
machine on the right 
to return 5 if we ask 
it for the value of A.

A B A B

Set A=5

6 7 765

“OK”! Read A “5”!

5



Sequential Consistency is the Ideal
• AKA: Behaves like a single machine 
would
• Possible algorithm: two-phase commit

A B A B

Set A=5

6 7 765

“OK”! Read A “5”!
Set A=5

“OK!”
5

Don’t say “OK” until 
you hear from the 
other machine!



One of the replicas might crash
• On timeout, assume node is crashed
• Reroute requests to live nodes

A B A B

Set A=5

6 7 765

“OK”! “5”!
Set A=5

Read A



But if the network fails?
• No way to tell whether 
it’s the network or the 
remote machine.

6 7 765
A B A B

Set A=5 “OK”!
Set A=5

Read A “6”!



CAP Theorem: Consistency or 
Availability
• Pick two of three:
• Consistency: All nodes see the same data at 

the same time (strong consistency)
• Availability: Individual node failures do not 

prevent survivors from continuing to operate
• Partition tolerance: The system continues to 

operate despite message loss (from network 
and/or node failure)
• Can’t drop this for a DS - networks can always fail



Luckily, there are possible 
compromises
• Sacrifice some availability for consistency 
(eg in a chat system: you want the chats 
to appear in order)
• Sacrifice some consistency for availability 
(eg you may not care in what order the 
cats appear)
• Or you may want different policies for 
reads vs. writes.
• Doing this is beyond the limits of this 
course (whew!)

16



Most distributed systems combine both 
partitioning and replication

AA BB



Learning Goals for this Lesson
• You should now be able to
• explain the concepts of data partition and 

replication
• List and explain the major benefits and 

pitfalls of each of these
• Explain the CAP theorem

18


